

Math 565: Functional Analysis

Lecture 4

Discussion of L^p vs L^q when $p < q$. Let $1 \leq p < q < \infty$. Fix $\lambda > 0$ and let $f_\lambda: (0, \infty) \rightarrow (0, \infty)$ be the function $x \mapsto \frac{1}{x^\lambda}$. Then Riemann integration shows that $\mathbb{1}_{(0,1)} \cdot f_\lambda \in L^p(\mathbb{R}, \lambda) \Leftrightarrow p < \frac{1}{\lambda}$ and $\mathbb{1}_{[1, \infty)} \cdot f_\lambda \in L^p(\mathbb{R}, \lambda) \Leftrightarrow p > \frac{1}{\lambda}$. So for $p < q$, the functions in L^q blow up faster locally, while functions in L^p decay slower at ∞ . The first case only matters when there are arbitrarily small measure sets (e.g., atomless) while the second phenomenon happens in any infinite measure space.

Prop. Let $0 < p < q \leq \infty$.

- (a) $L^p(X) \subseteq L^q(X)$ for any set X . In fact, $\|f\|_q \leq \|f\|_p$ for all $f: X \rightarrow \mathbb{C}$.
- (b) $L^q(X, \mu) \subseteq L^p(X, \mu)$ for any finite measure space (X, μ) . In fact, $\|f\|_p \leq \mu(X)^{\frac{1}{p} - \frac{1}{q}} \|f\|_q$. In particular, when (X, μ) is a prob. space, then $\|f\|_p \leq \|f\|_q$.

L^p norm via integration against L^q . Let $1 \leq p \leq \infty$ and let $q \geq 1$ be its conjugate exponent, i.e. $\frac{1}{p} + \frac{1}{q} = 1$ (equiv. $p-1 = \frac{p}{q}$). Let (X, μ) be a measure space and $f: X \rightarrow \mathbb{C}$ be a μ -measurable function such that:

- (i) $\{f \neq 0\}$ is σ -finite, i.e. $= \bigcup X_n$ with $\mu(X_n) < \infty$.
- (ii) $f \cdot g \in L^1(\mu)$ for all simple $g \in L^q(\mu)$ ($\Leftrightarrow \{g \neq 0\}$ has finite measure).

Then

$$\|f\|_p = \sup \left\{ \left| \int f g \, d\mu \right| : g \text{ simple and } \|g\|_q = 1 \right\} = \sup \left\{ \left| \int f g \, d\mu \right| : \|g\|_q = 1 \right\}.$$

Proof. By Hölder's ineq., $\left| \int f g \, d\mu \right| \leq \int \|f\|_p \|g\|_q \, d\mu \leq \|f\|_p \cdot \|g\|_q = \|f\|_p$ for all $g \in L^q(\mu)$, so $\sup \left\{ \left| \int f g \, d\mu \right| : g \text{ simple and } \|g\|_q = 1 \right\} \leq \sup \left\{ \left| \int f g \, d\mu \right| : \|g\|_q = 1 \right\} \leq \|f\|_p$ and we need to show $\|f\|_p \leq \sup \left\{ \left| \int f g \, d\mu \right| : g \text{ is simple with } \|g\|_q = 1 \right\}$.

We first make the condition in the supremum less restrictive, leaving its proof for HW.

Claim. $\sup\{|\int fg d\mu| : g \text{ simple and } \|g\|_q = 1\} = \sup\{|\int fg d\mu| : \|g\|_q = 1, g \text{ bdd, } \mu\{g \neq 0\} < \infty\}.$

We also leave for **HW** the proof for $p = \infty$ and assume $p < \infty$ here.

If we knew that f is bdd, has finite measure support and is in L^p , then as g we could take $g := \frac{|f|^{p-1}}{\|f\|_p^{p-1}} \cdot \overline{\operatorname{sgn} f}$. Then, recalling that $p-1 = \frac{p}{q}$, we would have:

$$(a) \|g\|_q = \frac{1}{\|f\|_p^{p-1}} \cdot \left(\int |f|^{\frac{p}{q} \cdot q} d\mu \right)^{\frac{1}{q}} = \frac{1}{\|f\|_p^{p-1}} (\|f\|_p^p)^{\frac{1}{q}} = 1;$$

$$(b) \int fg d\mu = \frac{1}{\|f\|_p^{p-1}} \int |f|^p d\mu = \frac{1}{\|f\|_p^{p-1}} \|f\|_p^p = \|f\|_p.$$

so $\|f\|_p = \int fg d\mu \leq \sup \{ \dots \}$. However, we don't have that f is like that (bdd, finite measure support and in L^p), so we approximate f by such functions. Let (\tilde{f}_n) be a sequence of simple functions such that $\tilde{f}_n \rightarrow f$ pointwise and $|\tilde{f}_n| \leq |f|$. Then $f_n := \mathbb{1}_{X_n} \tilde{f}_n$ are still simple, $f_n \rightarrow f$ pointwise and $|f_n| \leq |f|$, but also $\{f_n \neq 0\} \subseteq X_n$ so it has finite measure.

Take $g_n := \frac{|\tilde{f}_n|^{p-1} \overline{\operatorname{sgn} f}}{\|\tilde{f}_n\|_p^{p-1}}$. The g_n are not simple (because of $\operatorname{sgn} f$) but they are bdd and have finite measure support. Also, by the same calculation as above, we have

$$(a') \|g_n\|_q = 1;$$

$$(b') \int |f| |\tilde{f}_n| d\mu = \|f\|_p \|g_n\|_p;$$

$$(c') \int fg_n = \|f\|_p \|g_n\|_p$$

Thus, applying MCT to $|\tilde{f}_n| \nearrow |f|$, we get

$$\begin{aligned} \|f\|_p &= \lim_n \|f\|_p \|g_n\|_p = \lim_n \int |f| |\tilde{f}_n| d\mu \leq \lim_n \int |f| |g_n| d\mu = \lim_n \int fg_n d\mu \\ &\leq \sup \{ |\int fg d\mu| : \|g\|_q = 1, g \text{ bdd, } \mu\{g \neq 0\} < \infty \}. \end{aligned}$$

□

Minkowski's inequality for integrals of functions. Let (X, μ) and (Y, ν) be σ -finite measure spaces and $1 \leq p \leq \infty$. Let $f: X \times Y \rightarrow \mathbb{C}$ be a $\mu \times \nu$ -measurable function such that

$y \mapsto \|f(\cdot, y)\|_p$ is in $L^1(\nu)$ (in particular, $f(\cdot, y) \in L^p(\mu)$ for ν -a.e. $y \in Y$). Then $f(x, \cdot) \in L^1(\nu)$ for a.e. $x \in X$ and

$$\left\| \int f(\cdot, y) d\nu(y) \right\|_p \leq \int \|f(\cdot, y)\|_p d\nu(y). \quad (*)$$

Remark. Minkowski's original inequality $\|f+g\|_p \leq \|f\|_p + \|g\|_p$ is a special case of this with $Y := \mathbb{Z}$ and $\nu :=$ counting measure.

Proof. It suffices to prove the statement for $|f|$ since $f(x, \cdot) \in L^1(\nu) \Leftrightarrow |f(x, \cdot)| \in L^1(\nu)$ and $\int f(\cdot, y) d\nu(y) \leq \int |f(\cdot, y)| d\nu(y)$. Thus, we may assume WLOG that $f \geq 0$, so $\int f(x, y) d\nu(y)$ is defined and $(*)$ would automatically imply that $f(x, \cdot) \in L^1(\nu)$ for a.e. $x \in X$.

For $p = \infty$, $(*)$ is immediate because $\int f(x, y) d\nu(y) \leq \int \|f(\cdot, y)\|_\infty d\nu(y)$.

Suppose $p < \infty$. Denoting $F(x) := \int f(x, y) d\nu(y)$ $(*)$ becomes

$$\|F\|_p \leq \int \|f(\cdot, y)\|_p d\nu(y),$$

and we prove this by the calculation of $\|F\|_p$ via integration against $L^q(\mu)$. To apply this statement, we first verify that $Fg \in L^1(\mu)$ for all $g \in L^q(\mu)$.

Claim. $\|Fg\|_1 \leq \|g\|_q \cdot \int \|f(\cdot, y)\|_p d\nu(y) < \infty$ for all $g \in L^q(\mu)$.

Pf of Claim.

$$\int |F \cdot g| d\mu = \iint |f(x, y)g(x)| d\nu(y) d\mu(x) \stackrel{\text{Torelli}}{=} \iint |f(x, y)|_p |g(x)| d\mu(x) d\nu(y)$$

$$[\text{H\"older}] \leq \int \|f(\cdot, y)\|_p \cdot \|g\|_q d\nu(y) = \|g\|_q \cdot \int \|f(\cdot, y)\|_p d\nu(y) < \infty. \quad \square \text{ (Claim)}$$

Thus, for $\|g\|_q = 1$, $|\int Fg d\mu| \leq \|Fg\|_1 \leq \int \|f(\cdot, y)\|_p d\nu(y)$, so

$$\|F\|_p = \sup \left\{ \left| \int Fg d\mu \right| : \|g\|_q = 1 \right\} \leq \int \|f(\cdot, y)\|_p d\nu(y).$$

□